Identification of Papaya Ripeness Using the Support Vector Machine Algorithm
Abstract
Papaya is a tropical fruit that is commonly consumed and found in Indonesia. The ripeness level of papaya is typically assessed based on its colour. However, farmers and consumers often make mistakes identifying the fruit's ripeness. This research aims to design an application capable of determining the ripeness level of papaya based on colour images using Red, Green, Blue (RGB) and Hue, Saturation, Value (HSV) features and applying the Support Vector Machine (SVM) algorithm for ripeness classification. The dataset consists of images of California papayas, with 150 samples. The outcome of this study is a digital image application that can classify papaya ripeness into three categories: raw, half-ripe, and fully ripe. The evaluation used 80% of the data for training and 20% for testing. The results show an accuracy of 80%. With this relatively high level of accuracy, it can be concluded that the SVM algorithm is reliable for classifying papaya ripeness levels of Papayas.
Keywords
Full Text:
PDFReferences
M. E. Al Rivan and G. R. Sung, “Identifikasi Mutu Buah Pepaya California (Carica Papaya L.) Menggunakan Metode Jaringan Syaraf Tiruan,” Jurnal Sisfokom (Sistem Informasi dan Komputer), vol. 10, no. 1, pp. 113–119, Apr. 2021, doi: 10.32736/sisfokom.v10i1.1105.
E. Ellif, S. H. Sitorus, and R. Hidayati, “Klasifikasi Kematangan Pepaya Menggunakan Ruang Warna Hsv Dan Metode Naive Bayes Classifier,” Coding Jurnal Komputer dan Aplikasi, vol. 9, no. 01, p. 66, Apr. 2021, doi: 10.26418/coding.v9i01.45906.
M. L. Firdhaus, F. Romadlon, and F. M. Wibowo, “Akurasi Estimasi Brix pada Tingkat Kematangan Pepaya Menggunakan Nilai RGB Berbasis Aplikasi Mobile,” Industria: Jurnal Teknologi dan Manajemen Agroindustri, vol. 8, no. 2, pp. 79–86, Aug. 2019, doi: 10.21776/ub.industria.2019.008.02.1.
L. Ardhia Wardani, I. G. P. S. Wijaya, and F. Bimantoro, “Klasifikasi Jenis Dan Tingkat Kematangan Buah Pepaya Berdasarkan Fitur Warna, Tekstur Dan Bentuk Menggunakan Support Vector Machine,” Jurnal Teknologi Informasi, Komputer dan Aplikasinya (JTIKA), vol. 4, no. 1, Mar. 2022.
D. P. N. Kinding, “Analisis Kelayakan Finansial Pada Usahatani Pepaya Calina / California Indonesia (Carica papaya. L),” Perwira Journal of Science & Engineering, vol. 1, no. 1, pp. 24–33, Feb. 2021, doi: 10.54199/pjse.v1i1.18.
M. E. Al Rivan and G. R. Sung, “Identifikasi Mutu Buah Pepaya California (Carica Papaya L.) Menggunakan Metode Jaringan Syaraf Tiruan,” Jurnal Sisfokom (Sistem Informasi dan Komputer), vol. 10, no. 1, pp. 113–119, Apr. 2021, doi: 10.32736/sisfokom.v10i1.1105.
R. Kurniawan, “Klasifikasi Tingkat Kematangan Buah Pepaya Berdasarkan Warna Kulit Menggunakan Sensor Warna Tcs3200,” Journal ICTEE, vol. 4, no. 1, p. 1, Mar. 2023, doi: 10.33365/jictee.v4i1.2692.
W. L. Ardhia, “Klasifikasi Jenis Dan Tingkat Kematangan Buah Pepaya Berdasarkan Fitur Warna, Tekstur Dan Bentuk Menggunakan Support Vector Machine,” JTIKA (Jurnal Teknologi Informasi, Komputer, dan Aplikasinya), vol. 4, no. 1, Mar. 2022.
A. Nata and S. Suparmadi, “Analisis Sistem Pendukung Keputusan Dengan Model Klasifikasi Berbasis Machine Learning Dalam Penentuan Penerima Program Indonesia Pintar,” JOURNAL OF SCIENCE AND SOCIAL RESEARCH, vol. 5, no. 3, p. 697, Oct. 2022, doi: 10.54314/jssr.v5i3.1041.
P. R. Sihombing and A. M. Arsani, "Comparison Of Machine Learning Methods In Classifying Poverty In Indonesia In 2018," Jurnal Teknik Informatika (Jutif), vol. 2, no. 1, pp. 51–56, Jan. 2021, doi: 10.20884/1.jutif.2021.2.1.52.
I. Daqiqil Id, MACHINE LEARNING : Teori , Studi Kasus dan Implementasi Menggunakan Python , 1st ed. Pekan Baru: UR PRESS , 2021.
M. Qamal, D. Hamdhana, and M. Martin, "Sistem Pakar Untuk Mendiagnosa Penyakit Angina Pektoris (Angin Duduk) Dengan Metode Forward Chaining Berbasis Web," TECHSI - Jurnal Teknik Informatika, vol. 12, no. 1, p. 86, Apr. 2020, doi: 10.29103/techsi.v12i1.2150.
N. L. P. C. Savitri, R. A. Rahman, R. Venyutzky, and N. A. Rakhmawati, “Analisis Klasifikasi Sentimen Terhadap Sekolah Daring pada Twitter Menggunakan Supervised Machine Learning,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 7, no. 1, Apr. 2021, doi: 10.28932/jutisi.v7i1.3216.
Y. Afrillia, L. Rosnita, and D. Siska, “Analisis Sentimen Ciutan Twitter Terkait Penerapan Permendikbudristek Nomor 30 Tahun 2021 Menggunakan TextBlob dan Support Vector Machine,” G-Tech: Jurnal Teknologi Terapan, vol. 6, no. 2, pp. 387–394, Oct. 2022, doi: 10.33379/gtech.v6i2.1778.
D. A. Pisner and D. M. Schnyer, "Support vector machine," in Machine Learning, Elsevier, 2020, pp. 101–121. doi: 10.1016/B978-0-12-815739-8.00006-7.
N. Astrianda, "Klasifikasi Kematangan Buah Tomat Dengan Variasi Model Warna Menggunakan Support Vector Machine," VOCATECH: Vocational Education and Technology Journal, vol. 1, no. 2, pp. 45–52, Apr. 2020, doi: 10.38038/vocatech.v1i2.27.
M. Afriansyah, J. Saputra, Y. Sa'adati, and Valian Yoga Pudya Ardhana, "Optimasi Algoritma Nai?ve Bayes Untuk Klasifikasi Buah Apel Berdasarkan Fitur Warna RGB," Bulletin of Computer Science Research, vol. 3, no. 3, pp. 242–249, Apr. 2023, doi: 10.47065/bulletincsr.v3i3.251.
M. Afriansyah, J. Saputra, Y. Sa'adati, and Valian Yoga Pudya Ardhana, "Optimasi Algoritma Nai?ve Bayes Untuk Klasifikasi Buah Apel Berdasarkan Fitur Warna RGB," Bulletin of Computer Science Research, vol. 3, no. 3, pp. 242–249, Apr. 2023, doi: 10.47065/bulletincsr.v3i3.251.
A. N. Dzulhijjah, S. Anraeni, and S. Sugiarti, "Klasifikasi Kematangan Citra Labu Siam Menggunakan Metode KNN (K-Nearest Neighbor) Dengan Ekstraksi Fitur HSV (Hue, Saturation, Value)," Buletin Sistem Informasi dan Teknologi Islam, vol. 2, no. 2, pp. 103–110, May 2021, doi: 10.33096/busiti.v2i2.808.
S. Santi, C. Susanto, M. Muhardi, M. Patasik, and N. Nurlina, "Penerapan Algoritma K-Nearest Neighbor (KNN) Dalam Pengklasifikasian Tingkat Kematangan Buah Nangka Berdasarkan Citra Warna Kulit," Digital Transformation Technology, vol. 4, no. 1, pp. 685–692, Aug. 2024, doi: 10.47709/digitech.v4i1.4550.
Ristiana Betris Tosi, Helena dorothea Mbura, and Yampi R Kaesmetan, "Implementasi CNN Dalam Mengidentifikasi Kematangan Cabai Berdasarkan Warna," Indonesian Journal of Education And Computer Science, vol. 2, no. 1, pp. 34–42, Apr. 2024, doi: 10.60076/indotech.v2i1.385.
A. Anggara, N. Nurdin, and R. Meiyanti, "Sentiment Analysis of the MK Decision Trial of the Result of the 2024 President and Vice President General Election on Social Media X Using the Support Vector Machine Method," International Journal of Engineering, Science and Information Technology, vol. 4, no. 4, pp. 125–134, Oct. 2024, doi: 10.52088/ijesty.v4i4.591.
DOI: https://doi.org/10.52088/ijesty.v5i1.710
Article Metrics
Abstract view : 0 timesPDF - 0 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Rizki Minta Maito, Mukti Qamal, Fajriana