Isolation and Fractionation of Lignin from Sugar Cane Bagasse (Saccharum Officinarum L.) as an Antioxidant

Shondang Tresia Marbun

Abstract


Bagasse is one of the solid wastes of the sugar cane industry, and it contains lignin fibre. Lignin from sugarcane bagasse is also known to have relatively high antioxidant activity. Sugarcane bagasse antioxidants can stabilize free radicals by completing free radicals’ lack of electrons and inhibiting chain reactions from forming free radicals. This type of research is laboratory experimental research (actual experiment design). In this research, lignin isolation and fractionation will be carried out from sugarcane bagasse to obtain lignin fractions with antioxidant activity. The percentage of lignin yield from this process is around 72.85%. The IR spectrum resulting from isolation from sugarcane bagasse has a typical absorption peak of aliphatic and aromatic –CH at a wave number of 2919.7/cm. The antioxidant activity of the lignin fraction from sugarcane bagasse was determined using the DPPH (1,1-diphenyl-2- picrylhydrazyl) free radical scavenging method using four solvents, namely ethyl acetate, acetone and methanol. Based on the level of antioxidant strength, the strength level is <50 powerful, 50-100 strong, 100-250 medium, 250-500 weak and >500 inactive; therefore, the results of testing the most potent antioxidant activity in the acetone fraction were found to be ??50 50, 6755 mg/L and weak antioxidant activity was found in the methanol fraction, the result was ??50 68.8503.


Keywords


Bagasse, Lignin, Antioxidant, DPPH, Isolation

Full Text:

PDF

References


Kaur, R., & Uppal, S. K. (2015). Structural characterization and antioxidant activity of lignin from sugarcane bagasse. Colloid and Polymer Science, 293(9), 2585–2592. https://doi.org/10.1007/s00396-015-3653-1

Kaur, R., Uppal, S. K., & Sharma, P. (2017). Antioxidant and antibacterial activities of sugarcane bagasse lignin and chemically modified lignins. Sugar Tech, 19(6), 675–680. https://doi.org/10.1007/s12355-017-0513-y

Li, Z., & Ge, Y. (2012). Antioxidant activities of lignin extracted from sugarcane bagasse via different chemical procedures. International Journal of Biological Macromolecules, 51(5), 1116–1120. https://doi.org/10.1016/j.ijbiomac.2012.09.004

Setiati, R., Wahyuningrum, D., Siregar, S., & Marhaendrajana, T. (2016). Optimasi pemisahan lignin ampas tebu dengan menggunakan natrium hidroksida. ETHOS (Jurnal Penelitian Dan Pengabdian), June, 257. https://doi.org/10.29313/ethos.v0i0.1970

Xiao, L., Liu, W., Huang, J., Lou, H., & Qiu, X. (2021). Study on the antioxidant activity of lignin and its application performance in SBS elastomer. Industrial and Engineering Chemistry Research, 60(1), 790–797. https://doi.org/10.1021/acs.iecr.0c04699

Ariño, A., Beltrán, J. A., Herrera, A., & Roncalés, P. (2012). Fish and seafood: Nutritional value. In Encyclopedia of Human Nutrition (Vols. 2–4, pp. 254– 261). https://doi.org/10.1016/B978-0-12-375083-9.00110-0

Arni, S. Al. (2018). Extraction and isolation methods for lignin separation from sugarcane bagasse: A review. Industrial Crops and Products, 115(February), 330–339. https://doi.org/10.1016/j.indcrop.2018.02.012

Berghuis, N. T., Putri, A. K. D. S., Ratri, E. P. J., Assatyas, S., Marno, S., Putri, N., & Prabowo, E. B. (2022). Sintesis dan karakterisasi surfaktan lignosulfonat dari lignin alkali standar dan lignosulfonat teraminasi dari lignosulfonat standar. Al-Kimiya, 9(1), 32–41. https://doi.org/10.15575/ak.v9i1.17550

Chopipah, S., Solihat, S. S., & Nuraeni, E. (2021). Aktivitas antioksidan senyawa flavonoid pada daun benalu, katuk, johar, dan kajajahi: Review. Tropical Bioscience: Journal of Biological Science, 1(2), 19–26.

del Río, J. C., Lino, A. G., Colodette, J. L., Lima, C. F., Gutiérrez, A., Martínez, Á. T., Lu, F., Ralph, J., & Rencoret, J. (2015). Differences in the chemical structure of the lignins from sugarcane bagasse and straw. Biomass and Bioenergy, 81, 322–338. https://doi.org/10.1016/j.biombioe.2015.07.006

Duan, X., Wang, X., Chen, J., Liu, G., & Liu, Y. (2022). Structural properties and antioxidation activities of lignins isolated from sequential two-step formosolv fractionation. RSC Advances, 12(37), 24242–24251. https://doi.org/10.1039/d2ra02085h

Fadhil, K. A., Suryati, T., & Jayanegara, A. (2023). Comparison between natural and synthetic antioxidants in beef products: A metaanalysis. Jurnal Ilmu Produksi Dan Teknologi Hasil Peternakan, 11(1), 19–26. https://doi.org/10.29244/jipthp.11.1.19-26

Figueiredo, P., Lintinen, K., Hirvonen, J. T., Kostiainen, M. A., & Santos, H. A. (2018). Properties and chemical modifications of lignin: Towards lignin- based nanomaterials for biomedical applications. Progress in Materials Science, 93, 233–269. https://doi.org/10.1016/j.pmatsci.2017.12.001

Michelin, M., Liebentritt, S., Vicente, A. A., & Teixeira, J. A. (2018). Lignin from an integrated process consisting of liquid hot water and ethanol organosolv: Physicochemical and antioxidant properties. International Journal of Biological Macromolecules, 120, 159–169. https://doi.org/10.1016/j.ijbiomac.2018.08.046

Ndahawali, D. H. (2016). MICROORGANISMS CAUSING DAMAGE TO FISH AND OTHER FISHERY PRODUCTS. Journal of Matric Bulletin, 13(2), 17–21

Niemi, P., Aura, A. M., Maukonen, J., Smeds, A. I., Mattila, I., Niemelä, K., Tamminen, T., Faulds, C. B., Buchert, J., & Poutanen, K. (2013). Interactions of a lignin-rich fraction from Brewer’s spent grain with gut microbiota in vitro. Journal of Agricultural and Food Chemistry, 61(27), 6754–6762. https://doi.org/10.1021/jf401738x

Nugraheni, M. (2017). Post-Harvest Handling and Diversification of Marine Fisheries Processing. Yogyakarta State University.

Nurilmala, M., Nurjanah, N., & Hidayat, T. (2018). Handling of Aquatic Products. PT Penerbit IPB Press.

Olatunde, O. O., & Benjakul, S. (2018). Natural opreservatives for extending the shelf-life of seafood: A revisit. Comprehensive Reviews in Food Science and Food Safety, 17(6), 1595–1612. https://doi.org/10.1111/1541-4337.12390

Pane, S. (2022). Isolation of Lignin from Sugarcane Bagasse as a Material for Making Lignosulfonate Surfactants for Enhanced Oil Recovery (EOR) Applications. Universitas Islam Riau

Park, S. Y., Kim, J. Y., Youn, H. J., & Choi, J. W. (2018). Fractionation of lignin macromolecules by sequential organic solvents systems and their characterization for further valuable applications. International Journal of Biological Macromolecules, 106, 793–802. https://doi.org/10.1016/j.ijbiomac.2017.08.069

Pianusa, A. F., Sanger, G., & Wonggo, D. (2015). Study of changes in the quality of freshness of tuna (Euthynnus affinis) soaked in seaweed extract (Eucheuma spinosum) and mangrove fruit extract (Sonneratia alba). Fishery Product Technology Media, 4(2), 66. https://doi.org/10.35800/mthp.4.2.2016.12927

Pratiwi H, Yusran, Islawati, & Artati. (2023). Analysis of Antioxidant Levels in Green Binahong Leaf Extract Anredera cordifolia (Ten.) Steenis. Bioma: Makassar Biology Journal, 8(2): 66-74




DOI: https://doi.org/10.52088/ijesty.v5i1.689

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Shondang Tresia Marbun

International Journal of Engineering, Science and Information Technology (IJESTY) eISSN 2775-2674