Analysis of Public Sentiment Towards Celebrity Endorsment On Social Media Using Support Vector Machine

M Oriza Syahputra, Bustami Bustami, Lidya Rosnita

Abstract


Analysis of public sentiment towards celebrity endorsements on social media is very important to understand the public's response to promotional campaigns involving celebrities. In this study, we combine the VADER labeling method with the Support Vector Machine (SVM) method to analyze public sentiment toward celebrity endorsements on social media. Data is taken from various social media sources such as Twitter, Instagram, and Facebook. The data is pre-processed to ensure data accuracy and relevance and then labeled with the VADER method to determine the positive, negative, or neutral sentiment of the text. The labeled data is then extracted for features and used to train the SVM model. The trained SVM model is then validated using test data to measure its accuracy and performance. The results of the analysis provide useful insight into public sentiment towards celebrity endorsements on social media and can provide recommendations for stakeholders regarding this matter. Overall, combining the VADER labeling method with SVM in analyzing public sentiment towards celebrity endorsements on social media shows more accurate results and can provide practical benefits in marketing and promotional strategies. The results shown using the Support Vector Machine method with a ratio of 80:20 can provide average precision results of 77%, recall of 100%, f1-score of 87%, and accuracy of 76.92%. Twitter application user sentiment shows that 77% (338 data) of Twitter user reviews provide positive sentiment and 23% (119 data) provide negative sentiment reviews from a total of 517 data. Suggestions from researchers are that in future research they can add more data to make modeling easier to provide higher accuracy values. Using other classification and performance evaluation methods, such as Naive Bayes, Decision Tree, Fuzzy, or Deep Learning. Use other data processing tools, such as RapidMiner, Jupyter Notebook, RStudio, or others.


Keywords


Celebrity Endorsement, SVM, VADER, Deep Learning, Social Media

Full Text:

PDF

References


Odel, W., Nillammadil, M., Atiln, T., Lelksono, B. B., Saril, A. W., Syafilqatulbelstarilyah, A., Safiltril, D. N., Akuntansil, J., Elkonomil, F., & Surabaya, U. N. (2020). Hubungan Cellelbrilty Elndorselmelnt Telrhadap Kelputusan Pelmbellil Pada Shopelel Dan Tokopeldila. Jurnal Bilsnils dan Kajilan Stratelgil Manajelmeln. 5, 1–13

Watil, H. (2019). Pelngaruh Selebgram sebagai Celelbrity Elndorselmelnt telrhadap Pelrillaku Konsumtif Mahasilwi Jurnal Pelndild-ilkan Sosilologil, 9(1), 722–728. http://dx.doil.org/10.17509/iljost.v4il1.xxxx.

Prasojo, El. (2019). Pelngaruh Cellelbrilty Elndorselmelnt Telrhadap Milnat Bellil Mellaluil Brand Ilmagel (Studil Pada Mahasilswa Kota Telgal). Journal Compeltelncy of Busilnelss, 3(1), 14–33. https://doil.org/10.47200/jcob.v3il1.667.

Pradhan Debasis, Israel Duraipadian., and Dhruv Sethi. (2014). Celebrity Endorsement: How Celebrity- Brand – User Personality Congruence Affects Brand Attitude And Purchase Intention. Journal of Marketing Communications, 2(2): 1-18.

Vinodhini, G., & Chandrasekaran, R. (2012). Sentiment Analysis and Opinion Mining : A Survey International Journal of Ad-vanced Research in Sentiment Analysis and Opinion Mining : A Survey. International Journal of Advanced Research in Computer Science and Software Engineering, 2(6), 283–292.

Pang, B., & Lee, L. (2008). Opinion Mining and Sentiment Analysis. Journal Foundations and Trends in Information Retrieval 2, 1–135. https://doi.org/10.1561/1500000001

Lilu, B. (2012). Selntilmelnt analysils and opilnilon milnilng. Synthelsils Lelcturels on Human Languagel Telchnologilels, Chilcago: Morgan &. ClaypoolPublilshelr 5(1), 1–184

Saril, F. V., & Wilbowo, A. (2019). Analilsils Selntilmeln Pellanggan Toko Onlilnel Jd.Ild Melnggunakan Meltodel Naïvel Bayels Classilfilelr Belrbasils Konvelrsil Ilkon Elmosil. Jurnal SIlMElTRIlS, 10(2), 681–686

A Shimp, Terence. (2007). Periklanan Promosi (Aspek Tambahan Komunikasi Pemasaran Terpadu). Jilid I, edisi Terjemahan, Jakarta: Erlangga

Kasali, Rhenald, (2006) “ Pop Marketing dlam Konteks Pemasaran Indonesia”, Gramedia Pustaka Utama, Jakarta

Nasrullah, R. (2016). Melmel dan Ilslam : Silmulakra Bahasa Agama dil Meldila Sosilal. Acadelmilc Journal for Homilleltilc Studilels (Vol. 10, Ilssuel 1), 113–128

Felldman, Roneln, & Sangelr, Jamels. (2007). Thel Telxt Milnilng Handbook Advanceld Approachels iln Analyzilng Unstructureld Data. Cambrildgel Unilvelrsilty Prelss, Nelw York

Berry, M. W., & Kogan, J. (2010). Text Mining Application and Theory. United Kingdom: WILEY

Taufik, I., & Pamungkas, S.A. (2018). Analisis Sentimen Terhadap Tokoh Publik Menggunakan Algoritma Support Vector Machine (SVM). Jurnal LOGIKA (Vol. 8, Issue 1). 69-79. https://doi.org/10.54367/means.v5i1.615

Christianini, N., & Shawe-Taylor, J (2000) Support Vectore Machines Cambridge, Cambridge University Press, UK




DOI: https://doi.org/10.52088/ijesty.v4i3.543

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 M Oriza Syahputra, Bustami, Lidya Rosnita

International Journal of Engineering, Science and Information Technology (IJESTY) eISSN 2775-2674