Design of A Real-Time Object Detection Prototype System with YOLOv3 (You Only Look Once)

Chichi Rizka Gunawan, Nurdin Nurdin, Fajriana Fajriana


Object detection is an activity that aims to gain an understanding of the classification, concept estimation, and location of objects in an image. As one of the fundamental computer vision problems, object detection can provide valuable information for the semantic understanding of images and videos and is associated with many applications, including image classification. Object detection has recently become one of the most exciting fields in computer vision. Detection of objects on this system using YOLOv3. The You Only Look Once (YOLO) method is one of the fastest and most accurate methods for object detection and is even capable of exceeding two times the capabilities of other algorithms. You Only Look Once, an object detection method, is very fast because a single neural network predicts bounded box and class probabilities directly from the whole image in an evaluation. In this study, the object under study is an object that is around the researcher (a random thing).  System design using Unified Modeling Language (UML) diagrams, including use case diagrams, activity diagrams, and class diagrams. This system will be built using the python language. Python is a high-level programming language that can execute some multi-use instructions directly (interpretively) with the Object Oriented Programming method and also uses dynamic semantics to provide a level of syntax readability. As a high-level programming language, python can be learned easily because it has been equipped with automatic memory management, where the user must run through the Anaconda prompt and then continue using Jupyter Notebook. The purpose of this study was to determine the accuracy and performance of detecting random objects on YOLOv3. The result of object detection will display the name and bounding box with the percentage of accuracy. In this study, the system is also able to recognize objects when they object is stationary or moving.


YOLO, YOLOv3, Python, Anaconda

Full Text:



C. Fajar, “Tax Law Enforcement Sebagai Upaya Optimalisasi Penerimaan Pajak Negara Ditinjau Melalui Tingkat Kepatuhan Wajib Pajak,†Ecodemica, 2014.

M. Adjouadi and F. Candocia, “A Stereo Matching Paradigm Based on the Walsh Transformation,†IEEE Trans. Pattern Anal. Mach. Intell., vol. 16, no. 12, 1994, doi: 10.1109/34.387486.

M. K. Md Dahlan, N. Abdullah, and A. I. H. Suhaimi, “A study on supporting factors of digital workplace diffusion in public sector,†2018, doi: 10.1007/978-981-13-1628-9_29.

R. A. T. M. Ranasinghe, M. B. Jaksa, F. Pooya Nejad, and Y. L. Kuo, “Genetic programming for predictions of effectiveness of rolling dynamic compaction with dynamic cone penetrometer test results,†J. Rock Mech. Geotech. Eng., vol. 11, no. 4, 2019, doi: 10.1016/j.jrmge.2018.10.007.

A. Asrianda, H. A. K. Aidilof, and Y. Pangestu, “Machine Learning for Detection of Palm Oil Leaf Disease Visually using Convolutional Neural Network Algorithm,†J. Informatics Telecommun. Eng., vol. 4, no. 2, pp. 286–293, 2021, doi: 10.31289/jite.v4i2.4185.

Q. Wang, D. Wu, G. Li, and W. Gao, “A virtual model architecture for engineering structures with Twin Extended Support Vector Regression (T-X-SVR) method,†Comput. Methods Appl. Mech. Eng., vol. 386, p. 114121, 2021, doi:

L. Nguyen-Vu, J. Ahn, and S. Jung, “Android Fragmentation in Malware Detection,†Comput. Secur., vol. 87, 2019, doi: 10.1016/j.cose.2019.101573.

R. I. Tiyar and D. H. Fudholi, “Kajian Pengaruh Dataset dan Bias Dataset terhadap Performa Akurasi Deteksi Objek,†Petir, vol. 14, no. 2, pp. 258–268, 2021, doi: 10.33322/petir.v14i2.1350.

Nurdin, D. Hamdhana, and M. J. Setiawan, “Sistem Pendeteksi Pola Lafadz Allah Dan Muhammad Pada Citra Al-Qur’an Menggunakan Metode Peirce,†e-Journal Techsi Tek. Inf., vol. 9, no. 2, pp. 78–90, 2017.


G. V. Shalini, M. K. Margret, M. J. S. Niraimathi, and S. Subashree, “Retraction: Social Distancing Analyzer Using Computer Vision and Deep Learning,†Journal of Physics: Conference Series, vol. 1916, no. 1. 2021, doi: 10.1088/1742-6596/1916/1/012039.

L. Agustien et al., “Real-time Deteksi Masker Berbasis Deep Learning menggunakan Algoritma CNN YOLOv3,†vol. 8, no. 2, pp. 129–137, 2021.

J. R. Parker, Algorithms for image processing and computer vision. John Wiley & Sons, 2010.

F. Leite, A. Akcamete, B. Akinci, G. Atasoy, and S. Kiziltas, “Analysis of modeling effort and impact of different levels of detail in building information models,†Autom. Constr., 2011, doi: 10.1016/j.autcon.2010.11.027.

A. Roihan, P. A. Sunarya, and A. S. Rafika, “Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper,†IJCIT (Indonesian J. Comput. Inf. Technol., vol. 5, no. 1, pp. 75–82, 2020, doi: 10.31294/ijcit.v5i1.7951.

Q. C. Mao, H. M. Sun, Y. B. Liu, and R. S. Jia, “Mini-YOLOv3: Real-Time Object Detector for Embedded Applications,†IEEE Access, vol. 7, 2019, doi: 10.1109/ACCESS.2019.2941547.

Z. Zheng, J. Zhao, and Y. Li, “Research on Detecting Bearing-Cover Defects Based on Improved YOLOv3,†IEEE Access, vol. 9, 2021, doi: 10.1109/ACCESS.2021.3050484.

M. K. Rahmadhika, A. M. Thantawi, and U. P. I. Y. A. I, “Rancang Bangun Aplikasi Face Recognition Pada Pendekatan CRM Menggunakan Opencv Dan Algoritma Haarcascade,†vol. 5, no. 7, pp. 109–118.

Y. Primatama, A. E. Rhamadani, F. D. Ramtomo, D. Cahya, and P. Buani, “MENGGUNAKAN PEMINDAI WAJAH BERBASIS ANDROID,†pp. 59–65, 2018.

N. H. A. E and M. I. Zul, “Aplikasi Penerjemah Bahasa Isyarat Indonesia menjadi Suara berbasis Android menggunakan Tensorflow,†vol. 7, no. 1, pp. 74–83, 2021.


Article Metrics

Abstract view : 77 times
PDF - 61 times


  • There are currently no refbacks.

Copyright (c) 2022 Chichi Rizka Gunawan, Nurdin Nurdin, Fajriana Fajriana

International Journal of Engineering, Science and Information Technology (IJESTY) eISSN 2775-2674